
ABSTRACT
The InfiniteRealityTM graphics system is the first general-purpose
workstation system specifically designed to deliver 60Hz steady
frame rate high-quality rendering of complex scenes. This paper
describes the InfiniteReality system architecture and presents novel
features designed to handle extremely large texture databases,
maintain control over frame rendering time, and allow user custom-
ization for diverse video output requirements. Rendering perfor-
mance expressed using traditional workstation metrics exceeds
seven million lighted, textured, antialiased triangles per second, and
710 million textured antialiased pixels filled per second.

CR Categories and Subject Descriptors: I.3.1 [Computer
Graphics]: Hardware Architecture; I.3.3 [Computer Graph-
ics]: Picture/Image Generation

1 INTRODUCTION
This paper describes the Silicon Graphics InfiniteReality architec-
ture which is the highest performance graphics workstation ever
commercially produced. The predecessor to the InfiniteReality sys-
tem, the RealityEngineTM, [Akel93] was the first example of what
we term a third-generation graphics system. As a third-generation
system, the target capability of the RealityEngine was to render
lighted, smooth shaded, depth buffered, texture mapped, antialiased
triangles. The level of realism achieved by RealityEngine graphics
was well-matched to the application requirements of visual simula-
tion (both flight and ground based simulation), location based enter-
tainment [Paus96], defense imaging, and virtual reality. However,
application success depends on two areas: the ability to provide
convincing levels of realism and to deliver real-time performance of
constant scene update rates of 60Hz or more. High frame rates
reduce interaction latency and minimize symptoms of motion sick-
ness in visual simulation and virtual reality applications. If frame
rates are not constant, the visual integrity of the simulation is com-
promised.

InfiniteReality is also an example of a third-generation graphics
system in that its target rendering quality is similar to that of Reali-
tyEngine. However, where RealityEngine delivered performance in
the range of 15-30 Hz for most applications, the fundamental
design goal of the InfiniteReality graphics system is to deliver real-
time performance to a broad range of applications. Furthermore, the
goal is to deliver this performance far more economically than com-
petitive solutions.
______________________________________________________
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Most of the features and capabilities of the InfiniteReality architec-
ture are designed to support this real-time performance goal. Mini-
mizing the time required to change graphics modes and state is as
important as increasing raw transformation and pixel fill rate. Many
of the targeted applications require access to very large textures
and/or a great number of distinct textures. Permanently storing such
large amounts of texture data within the graphics system itself is not
economically viable. Thus methods must be developed for applica-
tions to access a “virtual texture memory” without significantly
impacting overall performance. Finally, the system must provide
capabilities for the application to monitor actual geometry and fill
rate performance on a frame by frame basis and make adjustments
if necessary to maintain a constant 60Hz frame update rate.

Aside from the primary goal of real-time application performance,
two other areas significantly shaped the system architecture. First,
this was Silicon Graphics’ first high-end graphics system to be
designed from the beginning to provide native support for
OpenGLTM. To support the inherent flexibility of the OpenGL archi-
tecture, we could not take the traditional approach for the real-time
market of providing a black-box solution such as a flight simulator
[Scha83].

The InfiniteReality system is fundamentally a sort-middle architec-
ture [Moln94]. Although interesting high-performance graphics
architectures have been implemented using a sort-last approach
[Moln92][Evan92], sort-last is not well-suited to supporting
OpenGL framebuffer operations such as blending. Furthermore,
sparse sort-last architectures make it difficult to rasterize primitives
into the framebuffer in the order received from the application as
required by OpenGL.

The second area that shaped the graphics architecture was the need
for the InfiniteReality system to integrate well with two generations
of host platforms. For the first year of production, the InfiniteReal-
ity system shipped with the Onyx host platform. Currently, the Infi-
niteReality system integrates into the Onyx2 platform. Not only
was the host to graphics interface changed between the two sys-
tems, but the I/O performance was also significantly improved.
Much effort went into designing a graphics system that would ade-
quately support both host platforms.

The remainder of the paper is organized as follows. The next sec-
tion gives an architectural overview of the system. Where appropri-
ate, we contrast our approach to that of the RealityEngine system.
Section 3 elaborates on novel functionality that enables real-time
performance and enhanced video capabilities. Section 4 discusses
the performance of the system. Finally, concluding remarks are
made in Section 5.

2 ARCHITECTURE
It was a goal to be able to easily upgrade Onyx RealityEngine sys-
tems to InfiniteReality graphics. Accordingly, the physical parti-
tioning of the InfiniteReality boardset is similar to that of
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RealityEngine; there are three distinct board types: the Geometry,
Raster Memory, and Display Generator boards (Figure 1).

The Geometry board comprises a host computer interface, com-
mand interpretation and geometry distribution logic, and four
Geometry Engine processors in a MIMD arrangement. Each Ras-
ter Memory board comprises a single fragment generator with a
single copy of texture memory, 80 image engines, and enough
framebuffer memory to allocate 512 bits per pixel to a 1280x1024
framebuffer. The display generator board contains hardware to
drive up to eight display output channels, each with its own video
timing generator, video resize hardware, gamma correction, and
digital-to-analog conversion hardware.

Systems can be configured with one, two or four raster memory
boards, resulting in one, two, or four fragment generators and 80,
160, or 320 image engines.

Figure 1: Board-level block diagram of the maximum
configuration with 4 Geometry Engines, 4 Raster Memory boards,

and a Display Generator board with 8 output channels.

2.1 Host Interface
There were significant system constraints that influenced the archi-
tectural design of InfiniteReality. Specifically, the graphics system
had to be capable of working on two generations of host platforms.
The Onyx2 differs significantly from the shared memory multipro-
cessor Onyx in that it is a distributed shared memory multiproces-
sor system with cache-coherent non-uniform memory access. The
most significant difference in the graphics system design is that the
Onyx2 provides twice the host-to-graphics bandwidth (400MB/sec
vs. 200MB/sec) as does Onyx. Our challenge was to design a sys-
tem that would be matched to the host-to-graphics data rate of the
Onyx2, but still provide similar performance with the limited I/O
capabilities of Onyx.

We addressed this problem with the design of the display list sub-
system. In the RealityEngine system, display list processing had
been handled by the host. Compiled display list objects were
stored in host memory, and one of the host processors traversed the
display list and transferred the data to the graphics pipeline using
programmed I/O (PIO).

With the InfiniteReality system, display list processing is handled
in two ways. First, compiled display list objects are stored in host
memory in such a way that leaf display objects can be “pulled”
into the graphics subsystem using DMA transfers set up by the
Host Interface Processor (Figure 1). Because DMA transfers are
faster and more efficient than PIO, this technique significantly
reduces the computational load on the host processor so it can be
better utilized for application computations. However, on the origi-
nal Onyx system, DMA transfers alone were not fast enough to
feed the graphics pipe at the rate at which it could consume data.
The solution was to incorporate local display list processing into
the design.

Attached to the Host Interface Processor is 16MB of synchronous
dynamic RAM (SDRAM). Approximately 15MB of this memory
is available to cache leaf display list objects. Locally stored display
lists are traversed and processed by an embedded RISC core.
Based on a priority specified using an OpenGL extension and the
size of the display list object, the OpenGL display list manager
determines whether or not a display list object should be cached
locally on the Geometry board. Locally cached display lists are
read at the maximum rate that can be consumed by the remainder
of the InfiniteReality pipeline. As a result, the local display list
provides a mechanism to mitigate the host to graphics I/O bottle-
neck of the original Onyx. Note that if the total size of leaf display
list objects exceeds the resident 15MB limit, then some number of
objects will be pulled from host memory at the reduced rate.

2.2 Geometry Distribution
The Geometry Distributor (Figure 1) passes incoming data and
commands from the Host Interface Processor to individual Geome-
try Engines for further processing. The hardware supports both
round-robin and least-busy distribution schemes. Since geometric
processing requirements can vary from one vertex to another, a
least-busy distribution scheme has a slight performance advantage
over round-robin. With each command, an identifier is included
which the Geometry-Raster FIFO (Figure 1) uses to recreate the
original order of incoming primitives.

2.3 Geometry Engines
When we began the design of the InfiniteReality system, it became
apparent that no commercial off-the-shelf floating point processors
were being developed which would offer suitable price/perfor-
mance. As a result, we chose to implement the Geometry Engine
Processor as a semicustom application specific integrated circuit
(ASIC).

The heart of the Geometry Engine is a single instruction multiple
datapath (SIMD) arrangement of three floating point cores, each of
which comprises an ALU and a multiplier plus a 32 word register
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file with two read and two write ports (Figure 2). A 2560 word on-
chip memory holds elements of OpenGL state and provides scratch
storage for intermediate calculations. A portion of the working
memory is used as a queue for incoming vertex data. Early simula-
tions of microcode fragments confirmed that high bandwidth to
and from this memory would be required to get high utilization of
the floating point hardware. Accordingly, each of the three cores
can perform two reads and one write per instruction to working
memory. Note that working memory allows data to be shared eas-
ily among cores. A dedicated float-to-fix converter follows each
core, through which one floating point result may be written per
instruction.

Figure 2: Geometry Engine

We used a very simple scheduler to evaluate the performance
effect of design trade-offs on critical microcode fragments. One of
the trade-offs considered was the number of pipeline stages in the
floating point arithmetic blocks. As we increased the depth of the
pipeline from one to four stages, the machine’s clock speed and
throughput increased. For more than four stages, even though the
clock speed improved, total performance did not because our code
fragments did not have enough unrelated operations to fill the
added computation slots.

Quite often machine performance is expressed in terms of vertex
rates for triangles in long strips whereas application performance
is much more likely to be determined by how well a system han-
dles very short strips, with frequent mode changes. The problem of
accelerating mode changes and other non-benchmark operations
has enormous impact on the microcode architecture, which in turn
influences aspects of the instruction set architecture.

To accelerate mode change processing, we divide the work associ-
ated with individual OpenGL modes into distinct code modules.
For example, one module can be written to calculate lighting when
one infinite light source is enabled, another may be tuned for one
local point light source, and still another could handle a single
spotlight. A general module exists to handle all cases which do not
have a corresponding tuned module. Similarly, different microcode
modules would be written to support other OpenGL modes such as
texture coordinate generation or backface elimination. A table con-
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sisting of pointers to the currently active modules is maintained in
GE working memory. Each vertex is processed by executing the
active modules in the table-specified sequence. When a mode
change occurs, the appropriate table entry is changed. Vertex pro-
cessing time degrades slowly and predictably as additional opera-
tions are turned on, unlike microcode architectures which
implement hyper-optimized fast paths for selected bundles of
mode settings, and a slow general path for all other combinations.

Since microcode modules tend to be relatively short, it is desirable
to avoid the overhead of basic-block preamble and postamble
code. All fields necessary to launch and retire a given operation,
including memory and register file read and write controls, are
specified in the launching microinstruction.

2.4 Geometry-Raster FIFO
The output streams from the four Geometry Engines are merged
into a single stream by the Geometry-Raster FIFO. A FIFO large
enough to hold 65536 vertexes is implemented in SDRAM. The
merged geometry engine output is written, through the SDRAM
FIFO, to the Vertex Bus. The Geometry-Raster FIFO contains a
256-word shadow RAM which keeps a copy of the latest values of
the Fragment Generator and Image Engine control registers. By
eliminating the need for the Geometry Engines to retain shadowed
raster state in their local RAMs, the shadow RAM permits raster
mode changes to be processed by only one of the Geometry
Engines. This improves mode change performance and simplifies
context switching.

2.5 Vertex Bus
One of our most important goals was to increase transform-limited
triangle rates by an order of magnitude over RealityEngine. Given
our desire to retain a sort-middle architecture, we were forced to
increase the efficiency of the geometry-raster crossbar by a factor
of ten. Whereas the RealityEngine system used aTriangle Bus to
move triangle parameter slope information from its Geometry
Engines to its Fragment Generators, the InfiniteReality system
employs aVertex Bus to transfer only screen space vertex informa-
tion. Vertex Bus data is broadcast to all Fragment Generators. The
Vertex Bus protocol supports the OpenGL triangle strip and trian-
gle fan constructs, so the Vertex Bus load corresponds closely to
the load on the host-to-graphics bus. The Geometry Engine trian-
gle strip workload is reduced by around 60 percent by not calcu-
lating triangle setup information. However, hardware to assemble
screen space primitives and compute parameter slopes is now
incorporated into the Fragment Generators.

2.6 Fragment Generators
In order to provide increased user-accessible physical texture
memory capacity at an acceptable cost, it was our goal to have
only one copy of texture memory per Raster Memory board. A
practical consequence of this is that there is also only one frag-
ment generator per raster board. Figure 3 shows the fragment gen-
erator structure.

Connected vertex streams are received and assembled into triangle



primitives. The Scan Converter (SC) and Texel Address Calculator
(TA) ASICs perform scan conversion, color and depth interpola-
tion, perspective correct texture coordinate interpolation and level-
of-detail computation. Up to four fragments, corresponding to 2x2
pixel regions are produced every clock. Scan conversion is per-
formed by directly evaluating the parameter plane equations at

Figure 3: Fragment Generator

each pixel [Fuch85] rather than by using an interpolating DDA as
was done in the RealityEngine system. Compared to a DDA, direct
evaluation requires less setup time per triangle at the expense of
more computation per pixel. Since application trends are towards
smaller triangles, direct parameter evaluation is a more efficient
solution.

Each texture memory controller (TM) ASIC performs the texel
lookup in its four attached SDRAMs, given texel addresses from
the TA. The TMs combine redundant texel requests from neighbor-
ing fragments to reduce SDRAM access. The TMs forward the
resulting texel values to the appropriate TF ASIC for texture filter-
ing, texture environment combination with interpolated color, and
fog application. Since there is only one copy of the texture mem-
ory distributed across all the texture SDRAMs, there must exist a
path from all 32 texture SDRAMs to all Image Engines. The TMs
and TFs implement a two-rank omega network [Hwan84] to per-
form the required 32-to-80 sort.

2.7 Image Engines
Fragments output by a single Fragment Generator are distributed
equally among the 80 Image Engines owned by that generator.
Each Image Engine controls a single 256K x 32 SDRAM that
comprises its portion of the framebuffer. Framebuffer memory per
Image Engine is twice that of RealityEngine, so a single raster
board system supports eight sample antialiasing at 1280 x 1024 or
four sample antialiasing at 1920 x 1200 resolution.

2.8 Framebuffer Tiling
Three factors contributed to development of the framebuffer tiling
scheme: the desire for load balancing of both drawing and video
requests; the various restrictions on chip and board level packag-
ing; and the requirement to keep on-chip FIFOs small.

In systems with more than one fragment generator, different frag-
ment generators are each responsible for two-pixel wide vertical
strips in framebuffer memory. If horizontal strips had been used
instead, the resulting load imbalance due to display requests would
have required excessively large FIFOs at the fragment generator
inputs. The strip width is as narrow as possible to minimize the
load imbalance due to drawing among fragment generators.

The Fragment Generator scan-conversion completes all pixels in a
two pixel wide vertical strip before proceeding to the next strip for
every primitive. To keep the Image Engines from limiting fill rate
on large area primitives, all Image Engines must be responsible for
part of every vertical strip owned by their Fragment Generator.
Conversely, for best display request load balancing, all Image
Engines must occur equally on every horizontal line. For a maxi-
mum system, the Image Engine framebuffer tiling repeat pattern is
a rectangle 320 pixels wide by 80 pixels tall (320 is the number of
Image Engines in the system and 80 is the number of Image
Engines on one Raster Memory board).

2.9 Display Hardware
Each of the 80 Image Engines on the Raster Memory boards drives
one or two bit serial signals to the Display Generator board. Two
wires are driven if there is only one Raster Memory board, and one
wire is driven if there are two or more. Unlike RealityEngine, both
the number of pixels sent per block and the aggregate video band
width of 1200 Mbytes/sec are independent of the number of Raster
Memory boards. Four ASICs on the display board (Figure 4) de-
serialize and de-interleave the 160 bit streams into RGBA10,
RGB12, L16, Stereo Field Sequential (FS), or color indexes. The
cursor is also injected at this point. A total of 32,768 color index
map entries are available.

Color component width is maintained at 12 bits through the
gamma table outputs. A connector site exists with a full 12 bit per
component bus, which is used to connect video option boards.
Option boards support the Digital Video Standard CCIR 601 and a
digital pixel output for hardware-in-the-loop applications.

The base display system consists of two channels, expandable to
eight. Each display channel is autonomous, with independent
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video timing and image resizing capabilities. The final channel
output drives eight-bit digital-to-analog converters which can run
up to a 220Mhz pixel clock rate. Either RGB or Left/Right Stereo
Field Sequential is available from each channel.

Figure 4: Display System

Video synchronization capabilities were expanded to support inde-
pendent timing per channel (Figure 5). Swap events are con-
strained to happen during a common interval. Three different
methods are used to synchronize video timing to external video
sources.Framelocking is the ability to rate lock, using line rate
dividers, two different video outputs whose line rates are related by
small integer ratios. Line rate division is limited by the program-
mability of the phase-locked-loop gain and feedback parameters
and the jitter spectrum of the input genlock source. The start of a
video frame is detected by programmable sync pattern recognition
hardware. Disparate source and displayed video formats which
exceed the range of framelock are vertically locked by simply per-
forming an asynchronous frame reset of the display video timing
hardware. In this instance, the pixel clock is created by multiplying
an oscillator clock. Identical formats may begenlocked. With
frame lock or genlock, the frame reset from the pattern recognition
hardware will be synchronous, and therefore cause no disturbance
of the video signal being sent to the monitor.

Figure 5: Video Synchronization

Certain situations require the synchronization of drawing between
separate graphics systems. This is required in visual simulation
installations where multiple displays are each driven by their own
graphics system. If one graphics system takes longer than a frame
time to draw a scene, the other graphics systems must be kept in
lock step with the slowest one. InfiniteReality uses an external
swap ready wire connecting all the graphics systems together in a
wired AND configuration.

The video outputs of all the graphics systems are first locked
together. Each pipe monitors the swap ready wire to determine if
all the other pipes have finished drawing. A local buffer swap is
only allowed to happen if all the graphics systems are ready to
swap. In order to cope with slight pipe to pipe variations in video
timing, a write exclusion window exists around the swap ready
register to guarantee all pipes make the same decision.

Finally an NTSC or PAL output is available with any of the eight
channels as the source. Resizing hardware allows for the scaling of
any source resolution or windowed subset, to NTSC or PAL reso-
lution.

3 FEATURES

3.1 Virtual Texture
The size of texture databases is rapidly increasing. Texture data
that cover the entire world at one meter resolution will be commer-
cially available in 1998. This corresponds to a texture size of
40,000,000 x 20,000,000 texels. Advanced simulation users need
to be able to navigate around such large data in real-time. To meet
this need, the InfiniteReality system provides hardware and soft-
ware support for very largevirtual textures, that is, textures which
are too large to reside in physical texture memory.

Previous efforts to support texture databases larger than available
texture memory required that the scene database modeler partition
the original texture into a number of smaller tiles such that a subset
of them fit into physical texture memory. The disadvantage of this
approach is that the terrain polygons need to be subdivided so that
no polygon maps to more than one texture tile. The InfiniteReality
system, by contrast, allows the application to treat the original
large texture as a single texture.

We introduce a representation called aclip-map which signifi-
cantly reduces the storage requirements for very large textures. To
illustrate the usefulness of the clip-map representation, we observe
that the amount of texture data that can be viewed at one time is
limited by the resolution of the display monitor. For example,
using trilinear mip-map textures on a 1024x1024 monitor, the
highest resolution necessary occurs just before a transition to the
next coarser level of detail. In this case the maximum amount of
resident texture required for any map level is no more than 2048 x
2048 for the finer map, and 1024x1024 for the coarser map,
regardless of the size of the original map level. This is the worst
case which occurs when the texture is viewed from directly above.
In most applications the database is viewed obliquely and in per-
spective. This greatly reduces the maximum size of a particular
level-of-detail that must be in texture memory in order to render a
frame.
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Recall that a mip-map represents a source image with a pyramidal
set of two-dimensional images, each of which covers the full area
of the source image at successively coarser resolution [Will83]. A
clip-map can be thought of as a subset of the mip-map of the entire
texture. It has two parts: a clip-map pyramid which is exactly the
same as the coarser levels of the original mip-map, and a clip-map
stack which holds a subset of the data in the original mip-map for
the finest levels of detail. The clip-map stack levels all have the
same size in texture memory, but each successively coarser level
covers four times the source image area of the immediately finer
level. Figure 6 illustrates the relationships between levels in a clip-
map when viewed from above a textured database. The clip-map
stack levels are centered on a common point. Each stack level rep-
resents larger and larger areas as the resolution of the data they
contain becomes coarser and coarser. Figure 7 illustrates a clip-
map for a 32K x 32K source image using a 2K x 2K clip-map tile
size. Note that the clip-map representation requires about 1/64 the
storage of the equivalent 32K x 32K mip-map.

Figure 6: Clip-Map Levels

Because the clip-map stack does not contain the entire texture the
position of the clip-map stack needs to be updated to track the
viewer’s position, or more optimally the center of the viewer’s
gaze. As the viewer’s position or gaze moves, the contents of the
clip-map stack should be updated to reflect this movement. New
texture data is loaded into the texture memory to replace the tex-
ture data that is no longer required. The rate of update of texture
data is highest for the finest clip-map stack level and becomes less
for coarser stack levels of the clip-map. In the InfiniteReality sys-
tem, it is not necessary to replace all data in a clip-map level when
only a few texels actually need to be updated. The hardware loads
new texture data over the old and automatically performs the cor-
rect addressing calculations using offset registers. Additionally, the
Fragment Generators contain registers that define the clip-map
center as it moves through the texture.

If the stack tile size is chosen correctly and the clip-map stack is
updated properly as the viewpoint moves through the scene, the
InfiniteReality system will produce images identical to those that
would have been produced if the entire source mip-map had been
resident in texture memory.

It cannot always be guaranteed that the texture data requested dur-

ing triangle rendering will be available at the requested level of
detail. This may occur if the size of the clip-map tile has been cho-
sen to be too small, or the update of the stack center failed to keep
pace with the motion of the viewer. The InfiniteReality texture sub-
system detects when texture is requested at a higher resolution than
is available in texture memory. It substitutes the best available data
which is data at the correct spatial position, but at a coarser level-
of-detail than requested. As a result, the rendered scene will have
regions where the texture will be coarser than if the entire mip-map
were resident in texture memory. However, it will otherwise be
rendered correctly. This substitution mechanism limits the required
clip-map tile size and reduces the required texture update rate.

Figure 7: 32Kx32K texture represented as a 2Kx2K clip-map.

The Fragment Generator is limited to addressing a 32K x 32K clip-
map. The addressability of clip-maps can be extended to arbitrary
texture sizes through software. The software layer needs only to
keep track of and implement a transformation from an arbitrarily
large texture space into the texture space addressable by the hard-
ware.

3.2 Texture Loading and Paging
We minimize the performance impact of large amounts of texture
paging in the design of InfiniteReality system. The graphics sub-
system interprets texture images directly as specified by the
OpenGL programmer so no host processor translation is required.
The front end of the Geometry Subsystem includes pixel unpack-
ing and format conversion hardware; DMA hardware directly
implements stride and padding address arithmetic as required by
OpenGL. The Fragment Generators accept raster-order texture
images at Vertex Bus-limited rates. To eliminate the need for the
host computer to make and retain copies of loaded textures for
context switching, the hardware supports texture image reads back
to the host.

The Geometry-Raster FIFO maintains a separate path through
which data bound for texture memory is routed. When the Frag-
ment Generators are busy with fill-limited primitives, pending tex-
ture data is transferred over the Vertex Bus and routed to write
queues in the TM ASICs. When a moderate amount of texture data
is queued for a particular texture DRAM, the TM suspends draw
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access and writes the queue contents to that DRAM. Because total
bandwidth to and from texture memory is an order of magnitude
greater than that of the Vertex Bus, this action only slightly
impacts fill rate. For fill-limited scenes, however, this approach uti-
lizes Vertex Bus cycles which would otherwise go unused. Syn-
chronization barrier primitives ensure that no texture is referenced
until it has been fully loaded, and conversely, that no texture load-
ing occurs until the data to be overwritten is no longer needed.

3.3 Scene Load Management
3.3.1  Pipeline Performance Statistics

Regardless of the performance levels of a graphics system, there
may be times when there are insufficient hardware resources to
maintain a real-time frame update rate. These cases occur when the
pipeline becomes either geometry or fill rate limited. Rather than
extending frame time, it is preferable for the application to detect
such a situation and adjust the load on the pipeline appropriately.

The InfiniteReality system provides a mechanism for performing
feedback-based load management with application-accessible
monitoring instrumentation. Specifically, counters are maintained
in the Geometry-Raster FIFO that monitor stall conditions on the
Vertex Bus as well as wait conditions upstream in the geometry
path. If the counters indicate that there is geometry pending in the
Geometry-Raster FIFO, but writes to the Vertex Bus are stalled,
then the system is fill rate limited. On the other hand, if the FIFO is
empty, then the system is either host or geometry processing lim-
ited. By extracting these measurements, the application can take
appropriate action whenever a geometry or fill rate bottleneck
would have otherwise caused a drop in frame rate.

A common approach to a geometry limited pipeline is for the
application to temporarily reduce the complexity of objects being
drawn starting with those objects that are most distant from the
viewer [Funk93][Rohl94]. This allows the application to reduce
the polygon count being sent to the pipeline without severely
impacting the visual fidelity of the scene. However, since distant
objects do not tend to cover many pixels, this approach is not well-
suited to the case where the pipeline is fill limited. To control fill
limited situations, the InfiniteReality uses a novel technique
termeddynamic video resizing.

3.3.2  Dynamic Video Resizing

Every frame, fill requirements are evaluated, and a scene is ren-
dered to the framebuffer at a potentially reduced resolution such
that drawing completes in less than one frame time. Prior to dis-
play on the monitor, the image is scaled up to the nominal resolu-
tion of the display format. Based on the current fill rate
requirements of the scene, framebuffer resolution is continuously
adjusted so that rendering can be completed within one frame time.
A more detailed explanation follows.

Pipeline statistics are gathered each frame and used to determine if
the current frame is close to being fill limited. These statistics are
then used to estimate the amount by which the drawing time
should be reduced or increased on the subsequent frame. Drawing
time is altered by changing the resolution at which the image is

rendered in the framebuffer. Resolution is reduced if it is estimated
that the new image cannot be drawn in less than a frame time. Res-
olution can be increased if it was reduced in prior scenes, and the
current drawing time is less than one frame. The new frame may
now be drawn at a different resolution from the previous one. Res-
olution can be changed in X or Y or both. Magnifying the image
back up to the nominal display resolution is done digitally, just
prior to display. The video resizing hardware is programmed for
the matching magnification ratios, and the video request hardware
is programmed to request the appropriate region of the frame-
buffer.

Finally, to ensure the magnification ratio is matched with the reso-
lution of the frame currently being displayed, loading of the mag-
nification and video request parameters is delayed until the next
swap buffer event for that video channel. This ensures that even if
scene rendering exceeds one frame time, the resizing parameters
are not updated until drawing is finished.

Each channel is assigned a unique display ID, and the swap event
is detected for each of these ID’s. This swap forces the loading of
the new resize parameters for the corresponding video channel,
and allows channels with different swap rates to resize.

Note that the effectiveness of this technique is independent of
scene content and does not require modifications to the scene data
base.

3.4 Video Configurability
One of the goals for the InfiniteReality system was to enable our
customers to both create their own video timing formats and to
assign formats to each video channel.

This required that the underlying video timing hardware had to be
more flexible than in the RealityEngine. Capabilities were
expanded in the video timing and request hardware’s ability to
handle color field sequential, interlace, and large numbers of fields.
The biggest change needed was an expanded capability to detect
unique vertical sync signatures when genlocking to an external
video signal. Since our customers could define vertical sync signa-
tures whose structure could not be anticipated, the standard
approach of simply hard-wiring the detection of known sync pat-
terns would have been inadequate. Therefore, each video channel
contains programmable pattern recognition hardware, which ana-
lyzes incoming external sync and generates resets to the video tim-
ing hardware as required.

In previous graphics systems, multi-channel support was designed
as an afterthought to the basic single channel display system. This
produced an implementation that was lacking in flexibility and was
not as well integrated as it could have been. In the RealityEngine
system, support for multiple channels was achieved by pushing
video data to an external display board. The software that created
multi-channel combinations was required to emulate the system
hardware in order to precisely calculate how to order the video
data. Ordering had to be maintained so each channel’s local FIFO
would not overflow or underflow. This approach was not very
robust and made it impossible for our customers to define their
own format combinations.



In the InfiniteReality system, every video channel was designed to
be fully autonomous in that each has its own programmable pixel
clock and video timing. Each video channel contains a FIFO, sized
to account for latencies in requesting frame buffer memory. Video
data is requested based on each channel’s FIFO levels. A round
robin arbiter is sufficient to guarantee adequate response time for
multiple video requests.

Format combinations are limited to video formats with the same
swap rate. Thus, the combination of 1280x1024@60Hz +
640x480@180Hz field sequential + 1024x768@120Hz stereo +
NTSC is allowed but combining 1920x1080@72Hz and 50Hz
PAL is not.

In order to achieve our design goal of moving more control of
video into the hands of our customers, two software programs
were developed. The first program is the Video Format Compiler
or vfc. This program generates a file containing the microcode
used to configure the video timing hardware. The source files for
the compiler use a language whose syntax is consistent with stan-
dard video terminology. Source files can be generated automati-
cally using templates. Generating simple block sync formats can
be accomplished without any specific video knowledge other than
knowing the width, height and frame rate of the desired video dis-
play format. More complex video formats can be written by modi-
fying an existing source file or by starting from scratch. The Video
Format Compiler generates an object file which can be loaded into
the display subsystem at any time. Both the video timing hardware
and the sync pattern recognition hardware are specified by thevfc
for each unique video timing format.

The second program is the InfiniteReality combiner orircombine.
Its primary uses are to define combinations of existing video for-
mats, verify that they operate within system limitations, and to
specify various video parameters. Both a GUI and a command line
version of this software are provided. Once a combination of video
formats has been defined, it can be saved out to a file which can be
loaded at a later time. The following is a partial list ofircombine
capabilities:

o Attach a video format to a specific video channel
o Verify that the format combination can exist within

system limits
o Define the rectangular area in framebuffer memory to be

displayed by each channel
o Define how data is requested for interlace formats
o Set video parameters (gain, sync on RGB, setup etc.)
o Define genlock parameters (internal/external, genlock

source format, horizontal phase, vertical phase)
o Control the NTSC/PAL encoder (source channel, input

window size, filter size)
o Control pixel depth and size

4 PERFORMANCE
The InfiniteReality system incorporates 12 unique ASIC designs
implemented using a combination of 0.5 and 0.35 micron, three-
layer metal semiconductor fabrication technology.

Benchmark performance numbers for several key operations are
summarized in Tables 1, 2, and 3. In general, geometry processing
rates are seven to eight times that of the RealityEngine system and
pixel fill rates are increased by over a factor of three. Note that the
depth buffered fill rate assumes that every Z value passes the Z
comparison and must be replaced which is the worst case. In prac-
tice, not every pixel will require replacement so the actual depth
buffered fill rates will fall between the stated depth buffered and
non depth buffered rate.

Although the benchmark numbers are impressive, our design goals
focused on achieving real-time application performance rather
than the highest possible benchmark numbers. Predicting applica-
tion performance is a complex subject for which there are no stan-
dard accepted metrics. Some of the reasons that applications do not
achieve peak benchmark rates include the frequent execution of
mode changes (e.g. assigning a different texture, changing a sur-
face material, etc.), the use of short triangle meshes, and host pro-
cessing limitations. We include execution times for commonly
performed mode changes (Table 4) as well as performance data for
shorter triangle meshes (Table 5). Practical experience with a vari-
ety of applications has shown that the InfiniteReality system is suc-
cessful in achieving our real-time performance goals.

We were pleasantly surprised by the utility of video resizing as a
fill rate conservation tool. Preliminary simulations indicated that
we could expect to dynamically reduce framebuffer resolution up
to ten percent in each dimension without substantially degrading
image quality. In practice, we find that we can frequently reduce
framebuffer resolution up to 25% in each dimension which results
in close to a 50% reduction in fill rate requirements.

unlit, untextured tstrips 11.3 Mtris/sec
unlit, textured tstrips 9.5 Mtris/sec
lit, textured tstrips 7.1 Mtris/sec

Table 1: Non Fill-Limited Geometry Rates

non-depth buffered, textured, antialiased 830 Mpix/sec
depth buffered, textured, antialiased 710 Mpix/sec

Table 2: Non Geometry-Limited Fill Rates (4 Raster Memory
boards)

RGBA8 83.1 Mpix/sec (332 Mb/sec)

Table 3: Peak Pixel Download Rate

glMaterial 240,941/sec
glColorMaterial 337,814/sec
glBindTexture 244,537/sec
glMultMatrixf 1,110,779/sec
glPushMatrix/glPopMatrix 1,489,454/sec

Table 4: Mode Change Rates

Length 2 triangle strips 4.7 Mtris/sec

Table 5: Geometry Rates for Short Triangle Strips



The above numbers are for unlit, untextured triangle strips. Other
types of triangle strips scale similarly.

The performance of the InfiniteReality system makes practical the
use of multipass rendering techniques to enhance image realism.
Multipass rendering can be used to implement effects such as
reflections, Phong shading, shadows, and spotlights [Sega92]. Fig-
ure 8 shows a frame from a multipass rendering demonstration
running at 60Hz on the InfiniteReality system. This application
uses up to five passes per frame and renders approximately 40,000
triangles each frame.

5 CONCLUSION
The InfiniteReality system achieves real-time rendering through a
combination of raw graphics performance and capabilities
designed to enable applications to achieve guaranteed frame rates.
The flexible video architecture of the InfiniteReality system is a
general solution to the image generation needs of multichannel
visual simulation applications. A true OpenGL implementation,
the InfiniteReality brings unprecedented performance to traditional
graphics-intensive applications. This underlying performance,
together with new rendering functionality like virtual texturing,
paves the way for entirely new classes of applications.
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Figure 8: An example of a high quality image generated at 60 Hz using multipass rendering techniques


