
Graphica Software
160 Queen St

5th Floor
Melbourne, 3000
Victoria, Australia.

e-mail: sales@melb.graphica.com.au
© Graphica Software Pty. Ltd. 1997

Developer Note - Using SAFEARRAY

Document: safearr.doc
Issue No: Draft

Printed: 05/10/97 10:59

Developer Note - Using SAFEARRAY 7/06/97

© Graphica Software Pty. Ltd. Page 2

Table of Contents

1. Preface ___3

2. Key Words __3

3. Related Documents ___3

4. Changes History__3

5. Introduction ___3

6. ATL SAFEARRAY Example__4

6.1 MIDL Definintion ___4

6.2 Wizard Generated File Work Around___4

7. Passing Back a SAFEARRAY___5

List of Figures
Figure 1. Maintaining existing SAFEARRAY header. __________________________ 5

List of Tables
Error! No table of contents entries found.

Developer Note - Using SAFEARRAY 7/06/97

© Graphica Software Pty. Ltd. Page 3

1. Preface
The following note provides information on using SAFEARRAY OLE Automation data types in
ActiveX controls written in C++ using the “Active Template Library”. In particular it discusses how
SAFEARRAY data can be passed in and out of Visual Basic (Version 5).
The information was “discovered” in the creation of a communications ActiveX control that had
methods which uses SAFEARRAY data type to pass “blobs” of data over the wire. This involved
creating controls with Visual Basic and then looking at the created type libraries, passing data to and
from the initial Visual Basic control and then trying to reproduce the same behavior using a C++
ATL control.

2. Key Words
SAFEARRAY OLE AUTOMATION ATL MIDL WIN32

3. Related Documents
[1] Microsoft Visual C++ Run-Time Library Reference Vol 3 - Active Template Library.
[2] Microsoft OLE Automation Programmer’s Reference
[3] Microsoft Visual Basic Programmer’s Guide (Version 4.0)

4. Changes History
Version 1.0 4 October, 1997 Graphica Software Pty. Ltd.

5. Introduction
According to the Microsoft documentation the SAFEARRAY data type is one of the basic supported
OLE Automation data types.
For ActiveX controls which provide interfaces to communications facilities such as binary
Send/Receive functions a SAFEARRAY array provides the preferred way to pass data into and
extract data from the control.
However most ActiveX containers do not support the SAFEARRAY data type directly, and require
that the SAFEARRAY be wrapped with a VARIANT type. This forces programmers to have to write
extra code and is inefficent in its use of memory as extra allocation is required for the VARIANT
data type wrapper.
For developers creating ActiveX controls using MFC there is no ability to specify SAFEARRAY
method parameters. In addition to not supporting the direct use of the SAFEARRAY data type MFC
controls do not easily support dual interfaces. For these reasons the Active Template Library (ATL)
now provides the preferred way to provide optimized ActiveX controls.
The wizards included with Visual C++ Version 5.0 provide good support for the creation of ATL
based controls.
Finally with the introduction of verion 5 Visual Basic is able to support the direct passing of
SAFEARRAY data without the requirement for extra wrapping using VARIANTs, this will mean that
other ActiveX containers will no doubt follow suite to ensure that provide full support for OLE
Automation data types.

Developer Note - Using SAFEARRAY 7/06/97

© Graphica Software Pty. Ltd. Page 4

6. ATL SAFEARRAY Example

6.1 MIDL Definintion
The Microsoft Interface Definition Language (MIDL) source file for an ATL project provides the
central driving code for any ATL control. The MIDL definition can be generated “automatically” via
the wizard, by simply giving the function names and the parameters of the interface.
The wizard will then add the definitions to the MIDL source file and thegenerate the corresponding
skeleton code stubs in the C++ source file.

The following example shows how to declare a SAFEARRAY of bytes using the MIDL.

interface ISafeEx : IDispatch
{
 [id(1), helpstring("Consume")]
 HRESULT Consume([in, out] SAFEARRAY(unsigned char) *Buf);
 [id(2), helpstring("Produce")]
 HRESULT Produce([in, out] SAFEARRAY(unsigned char) *Buf);
};

The Consume method is to pass in a blob and the Produce method is to return one. In both cases the
parameters must be declared as “[in, out]” as otherwise they will not be compiled correctly and the
Visual Basic Version 5 container will not work with the control.

6.2 Wizard Generated File Work Around
While this definition will be processed by the MIDL compiler corrrectly the stub header definitions
and implementation files generated by the ATL wizard are incorrect and must be corrected as shown
in the follow code fragments.
Original ATL wizard header file declaration

STDMETHOD(Produce)(/*[in, out]*/ SAFEARRAY (unsigned char) *Buf);
STDMETHOD(Consume)(/*[in, out]*/ SAFEARRAY (unsigned char) *Buf);

Modified header declaration

STDMETHOD(Produce)(/*[in, out]*/ SAFEARRAY /* (unsigned char) */ **Buf);
STDMETHOD(Consume)(/*[in, out]*/ SAFEARRAY /* (unsigned char) */ **Buf);

Original ATL wizard implemenation file stub

STDMETHODIMP SafeEx::Consume(SAFEARRAY (unsigned char) * Buf)
{

// TODO: Add your implementation code here

return S_OK;
}

STDMETHODIMP SafeEx::Produce(SAFEARRAY (unsigned char) * Buf)
{

// TODO: Add your implementation code here

return S_OK;
}

Modified implementation file stub

STDMETHODIMP SafeEx::Consume(SAFEARRAY /* (unsigned char) */ ** Buf)
{

// TODO: Add your implementation code here

return S_OK;
}

STDMETHODIMP SafeEx::Produce(SAFEARRAY /* (unsigned char) */ ** Buf)
{

// TODO: Add your implementation code here

return S_OK;
}

Developer Note - Using SAFEARRAY 7/06/97

© Graphica Software Pty. Ltd. Page 5

7. Passing Back a SAFEARRAY
Given the Visual Basic code fragments shown, how do we code the ATL C++ control to correctly
pass back an array of data?

Public Sub GetBlob1()
 Dim abyBlob() As BYTE
 Dim iSize As Integer
 tControl.Produce abyBlob()

 iSize = UBound(abyBlob) - LBound(abyBlob)
 MsgBox (“Got: “ & iSize)
End Sub

Public Sub GetBlob2()
 Dim abyBlob(30) As BYTE
 Dim iSize As Integer
 tControl.Produce abyBlob()

 iSize = UBound(abyBlob) - LBound(abyBlob)
 MsgBox (“Got: “ & iSize)
End Sub

To behave correctly the Produce method should not replace any existing SAFEARRAY “headers”, as
this will result in Visual Basic using the disposed SAFEARRAY and ignoring the newly allocated
one. Instead the called ATL control should dispose the data portion of the SAFEARRAY and
reallocate a new data section and make the passed SAFEARRAY header point to this.

This is shown in the following diagram.

SAFEARRAY

Old Data

New Data

*Buf

1) Dispose of old data block.

2) Allocate a new data block and set header to point to it.

Figure 1. Maintaining existing SAFEARRAY header.

The C++ code to handle this correctly is shown in the following example (note there is no correct
error handling in this code which has been check as simple as possible to illustrate the point).

STDMETHODIMP SafeEx::Produce(SAFEARRAY /* (unsigned char) */ ** tBuf)
//
// Note: Pass back a 100 Byte array, to illustrate what we do.
//
{
 HRESULT tRes = S_OK;
 SAFEARRAYBOUND tBnd[1];
 void *pvData;

 if (*tBuf) {
 //
 // Dispose of the original data block.
 //
 if (SafeArrayGetElemsize(*tBuf) == sizeof(unsigned char) &&
 SafeArrayGetDim(*tBuf) == 1) {
 SafeArrayDestroyData(*tBuf);

Developer Note - Using SAFEARRAY 7/06/97

© Graphica Software Pty. Ltd. Page 6

 (*tBuf)->rgsabound[0].lLbound = 0;
 (*tBnd)->rgsabound[0].cElements = 100;
 if (! FAILED(SafeArrayAllocData(*tBuf))) {
 if (! FAILED(SafeArrayAccessData(*tBuf, &pvData))) {
 memset(pvData, 0, 100);
 SafeArrayUnaccessData(*tBuf);
 }
 }
 }
 }
 else {
 //
 // Create a completely new Safe Array
 //
 tBnd[0].lLBound = 0;
 tBnd[0].cElements = 100;
 *tBuf = SafeArrayCreate(VT_U1, 1, tBnd);
 if (*tBuf) {
 if (! FAILED(SafeArrayAccessData(*tBuf, &pvData))) {
 memset(pvData, 0, 100);
 SafeArrayUnaccessData(*tBuf);
 }
 }
 }

 return(tRes);
}

This code has been trailed with Visual Basic Version 5 and found to behave the same as if the control
had been written directly in Visual Basic.

End of Document

